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ABSTRACT

This paper presents MADS (Multi-Agents for Data Science), an innovative and simple open-source
multi-agent framework designed for systemic pipeline execution in applied supervised machine
learning. By leveraging the capabilities of multi-agent systems (MAS), we introduce a universal
approach to optimize and streamline machine learning pipelines. Our framework highlights the
differences between various types of agents, such as reinforcement learning (RL) agents and large
language model (LLM) agents, and their distinct contributions to the process. While we currently
employ LLM agents to automate and enhance machine learning tasks, we acknowledge the potential
of incorporating RL agents in future iterations to further improve performance and adaptability. The
primary objective is to enhance the efficiency, scalability, and adaptability of supervised learning
applications across various domains. This integration addresses the complexity and manual effort
typically associated with machine learning workflows, paving the way for more automated, robust,
and scalable solutions. Our approach demonstrates significant improvements in task automation,
reduced human intervention, and enhanced model performance. The MADS framework, which will
soon be available as an open-source implementation, represents a pivotal contribution to the field of
machine learning, promising to facilitate broader adoption and collaborative advancement.

Keywords Multi-Agent Systems (MAS) · Machine Learning Pipelines · Supervised Learning · Data Science
Automation · Large Language Models (LLM) · Reinforcement Learning (RL) · Time Series Forecasting · AI Agents ·
Open-Source Framework · Model Efficiency · Task Automation · Scalability in Machine Learning · Model Adaptability ·
Collaborative AI Systems · Machine Learning Workflow Optimization

1 Introduction

1.1 Presentation of the Problem

Machine learning pipelines are essential for transforming raw data into actionable insights. They typically involve
several stages, including data collection, preprocessing, feature engineering, model selection, training, evaluation,
and deployment [1]. Each stage of the pipeline requires meticulous attention to detail and substantial manual effort,
which can introduce inefficiencies and inconsistencies. For instance, the preprocessing stage may involve cleaning
and normalizing data, handling missing values, and transforming features, all of which are time-consuming and prone
to human error. Similarly, model training and evaluation require iterative experimentation and fine-tuning to achieve
optimal performance, often necessitating expert intervention.

The complexity of managing these pipelines increases with the volume, variety, and velocity of data. As datasets
grow larger and more complex, the traditional manual approaches to managing machine learning workflows become
untenable [2]. This not only hampers efficiency but also limits the scalability and adaptability of machine learning
solutions. Moreover, the need for domain-specific adjustments in feature engineering and model selection further
complicates the pipeline management, making it difficult to apply a one-size-fits-all approach. This complexity is
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echoed by Yann LeCun, who has highlighted the critical need for scalable and efficient machine learning systems in the
face of growing data challenges [3].

1.2 Defining Agents and Multi-Agents in Artificial Intelligence

In artificial intelligence (AI), an agent is an autonomous entity capable of perceiving its environment, making decisions,
and performing actions to achieve specific goals. Agents operate based on a set of rules or learning algorithms that
guide their behavior. The key characteristics of an agent include autonomy, social ability, reactivity, and proactivity [4].

1.3 Multi-Agent Systems (MAS)

Multi-agent systems consist of multiple interacting agents that work together to solve complex problems that are beyond
the capabilities of individual agents. MAS can be used in a variety of applications, from robotics and simulation to
distributed computing and machine learning. The primary advantages of MAS include parallel processing, robustness
through redundancy, and the ability to tackle large-scale problems through cooperation and coordination among agents.
MAS are applied in domains such as transportation, logistics, and smart grids, where they enhance system efficiency
and scalability [5, 6].

1.4 Reinforcement Learning Agents

Reinforcement learning (RL) agents learn by interacting with their environment and receiving feedback in the form
of rewards or punishments. These agents use algorithms to maximize cumulative rewards over time. In a multi-agent
reinforcement learning (MARL) context, multiple RL agents operate in the same environment, which introduces
additional challenges such as non-stationarity and the credit assignment problem. MARL systems are designed to enable
agents to learn effective strategies for cooperation and competition. Recent advancements in MARL include frameworks
developed by TJU-DRL-LAB and MARLlib, which address these challenges and provide tools for implementing
MARL in various environments [7, 8, 9].

1.5 Large Language Model Agents

Large Language Model (LLM) agents, such as those based on the Autogen framework, leverage natural language
processing (NLP) capabilities to understand and generate human-like text. These agents are designed to perform a
wide range of tasks, from answering questions and providing recommendations to generating content and conducting
complex dialogues. Unlike traditional RL agents, LLM agents focus on tasks that involve understanding and generating
language, making them suitable for applications in customer service, content creation, and virtual assistants.

The Autogen framework exemplifies how LLM agents can be integrated into multi-agent systems to enhance their
capabilities. This framework supports the development of applications where multiple LLM agents collaborate to solve
tasks, leveraging their language understanding and generation abilities. The intersection of LLM and RL agents is an
emerging area of research, promising more sophisticated and versatile AI systems that combine the strengths of both
types of agents [10, 4, 6].

1.6 Integration and Differentiation

While RL agents and LLM agents serve different primary functions, they can be integrated within a multi-agent
system to complement each other. RL agents excel in decision-making tasks that involve interacting with dynamic
environments, while LLM agents are adept at handling tasks that require language comprehension and generation. By
integrating these agents, a multi-agent system can address a broader range of tasks more effectively.

1.6.1 Summary

• Agents: Autonomous entities that perceive, decide, and act within an environment.

• Multi-Agent Systems (MAS): Systems composed of multiple interacting agents, enhancing problem-solving
capabilities through cooperation.

• Reinforcement Learning Agents: Agents that learn by maximizing cumulative rewards through interaction
with their environment.

• Large Language Model Agents: Agents that utilize natural language processing to understand and generate
human-like text, suitable for tasks involving language.
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By combining RL and LLM agents within MAS, we can create systems that leverage the strengths of both, leading to
more robust and versatile AI solutions.

1.7 Importance of the Problem

The increasing demand for machine learning solutions across various sectors—such as healthcare, finance, retail, and
manufacturing—highlights the urgent need for more efficient and scalable approaches to managing these pipelines.
Manual processes are not only labor-intensive but also susceptible to errors and inconsistencies, which can significantly
impact the quality and reliability of the resulting models [11]. These inefficiencies can lead to suboptimal decision-
making and reduced competitiveness in industries where timely and accurate insights are crucial.

Furthermore, the rapid pace of technological advancement and the proliferation of big data necessitate systems that can
quickly adapt to changing conditions and incorporate new data seamlessly. Automation of machine learning pipelines
through multi-agent systems offers a promising solution to these challenges. By automating repetitive and complex
tasks, MAS can enhance the overall efficiency and reliability of the pipelines, reducing the dependency on human
intervention and minimizing the risk of errors [12]. This is particularly critical in applications requiring real-time
processing and decision-making, where delays and inaccuracies can have significant consequences [13].

1.8 Research Goals

The primary goal of this research is to develop and evaluate a multi-agent framework that automates the execution of
machine learning pipelines. This framework aims to:

• Enhance the Efficiency of Pipeline Execution: By automating repetitive tasks such as data preprocessing,
feature engineering, and model training, our framework aims to reduce the time and effort required to manage
machine learning pipelines. This automation is expected to free up human resources for more strategic and
creative tasks, thereby improving overall productivity.

• Improve Scalability: Our framework is designed to handle large and diverse datasets efficiently. By leveraging
the parallel processing capabilities of multi-agent systems, we aim to ensure that the pipeline can scale to
accommodate increasing data volumes and complexity without compromising performance. This addresses
one of the key challenges highlighted by LeCun in the context of scalable AI systems [14].

• Increase Adaptability: The framework is intended to be flexible enough to adapt to various supervised
learning applications. This includes the ability to integrate new models and techniques seamlessly, as well as
to adjust to different domain-specific requirements and data characteristics. Our approach is designed to be
modular, allowing for easy updates and extensions as new methodologies emerge.

• Provide Comprehensive Evaluation: We aim to rigorously evaluate the framework’s performance across
different datasets and problem types. This involves assessing not only the accuracy and robustness of the
models produced but also the efficiency and scalability of the pipeline as a whole. By doing so, we hope
to demonstrate the practical benefits and limitations of our approach, providing valuable insights for further
research and development. This comprehensive evaluation will help establish benchmarks and best practices
for the deployment of multi-agent systems in machine learning pipelines.

2 Related Work

2.1 Summarize Previous Research Related to the Problem

Previous research has extensively explored the use of multi-agent systems (MAS) in enhancing the efficiency of machine
learning pipelines. MAS involve multiple autonomous agents that interact and collaborate to solve complex tasks,
offering robust solutions through parallel processing and task distribution.

2.1.1 Foundational Work in Multi-Agent Systems

Multi-agent systems have been effectively applied in various domains, including distributed artificial intelligence and
machine learning. Key foundational texts, such as Multiagent Systems: Algorithmic, Game-Theoretic, and Logical
Foundations by Shoham and Leyton-Brown (2009), provide a comprehensive overview of MAS and their applications
in problem-solving and optimization [15].

Further foundational research is found in Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence
by Weiss (2013), which details the development of MAS and their role in distributed AI [16]. These works lay the
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groundwork for understanding the theoretical underpinnings of MAS and their practical implementations in various
fields.

Research by Stone and Veloso (2000) also offers insights into MAS applications, discussing agent-based systems
and their cooperative behaviors in complex environments [17]. These foundational works collectively highlight the
significance of MAS in distributed problem-solving and their potential to revolutionize machine learning workflows
through enhanced efficiency and robustness.

2.1.2 Recent Developments in Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning (MARL) has emerged as a powerful technique for training agents in dynamic
environments. MARL frameworks address critical challenges like non-stationarity, credit assignment, and exploration-
exploitation tradeoffs.

TJU-DRL-LAB has contributed significantly to this field with their work on solving non-stationarity and credit
assignment problems in cooperative Markov games. They utilize permutation-invariant networks to enhance learning
stability and efficiency [7].

MARLlib provides a comprehensive library for MARL, supporting various environments and algorithms, facilitating
the development and evaluation of sophisticated multi-agent systems [18]. These frameworks enable the development
of agents capable of coordinating and learning in complex settings, making them ideal for automating machine learning
pipelines.

The survey by Zhang et al. (2019) further elaborates on the recent advancements in MARL, highlighting the challenges
and future directions in the field [19]. Their comprehensive review underscores the importance of addressing non-
stationarity and scalability in MARL systems to ensure robust performance in real-world applications.

2.1.3 Time Series Forecasting Models

The evolution of foundational models for time series forecasting has significantly impacted the field of machine learning.
Notable models include:

• TimeGPT by Nixtla: A transformer-based model trained on a vast array of time series data, capable of
high-accuracy predictions in diverse domains without retraining [20].

• uniTS by Gao et al.: This model integrates multiple forecasting techniques, providing a robust and unified
framework for time series prediction [21].

• Chronos by Amazon: Designed for scalability and robustness, making it suitable for industrial-scale applica-
tions [22].

• Lag Llama by Ashok et al.: Focuses on leveraging lag-based features to enhance prediction accuracy across
various contexts [23].

These models have set new benchmarks in time series forecasting by improving prediction accuracy and efficiency.
The comprehensive review by Hewamalage et al. (2021) on deep learning for time series forecasting provides further
insights into the advancements and challenges in this domain [24].

Our research utilizes these advancements to enhance the forecasting capabilities of our multi-agent framework, ensuring
robust and scalable machine learning solutions. The practical implementations of these models demonstrate their
effectiveness in various domains, highlighting their potential for broader applications.

2.2 Highlight Gaps in the Literature

Despite significant advancements, existing solutions often lack a comprehensive approach to automating the entire
machine learning pipeline. Many studies focus on isolated components, such as model selection or feature engineering,
without integrating all steps seamlessly. Additionally, there is a need for frameworks that can adapt to a wide range of
supervised learning tasks beyond time series forecasting.

To address these gaps, our research examines the integration of foundational models and multi-agent systems within a
unified framework. By evaluating models like TimeGPT, uniTS, Chronos, and Lag Llama, we highlight the potential
for a more automated, holistic approach to machine learning pipelines. The need for end-to-end automation in machine
learning pipelines is further emphasized in recent surveys on MLOps and pipeline automation [25].
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Figure 1: Multi-agents for data science pipeline

2.3 How Our Study Relates to and Builds Upon Existing Work

Our study builds on existing research by combining the strengths of multi-agent systems and advanced time series
forecasting models into a cohesive framework. We utilize the Autogen framework, which supports the development
of large language model (LLM) applications involving multiple agents. By automating end-to-end processes in the
machine learning pipeline, from data preprocessing to model evaluation, our framework addresses the inefficiencies and
limitations identified in previous studies.

This integrated approach not only streamlines machine learning workflows but also enhances adaptability and scalability.
Our research demonstrates the feasibility and benefits of a multi-agent system for automating data science tasks, offering
a significant improvement over traditional, manual methods. The practical evaluations of our framework on various
datasets corroborate its effectiveness and scalability, providing a robust foundation for future research and development.

2.4 Highlight gaps in the literature

To accomplish our research goals, we embarked on a comprehensive examination of the new foundational models that
are arriving in the field of time series. Among these foundational models, we scrutinized were TimeGPT by Nixtla
.[26], uniTS by Shanghua Gao et al. [21], Chronos by Amazon [22], and Lag Llama by Arjun Ashok et al. [27].
Our assessment extended beyond simply gauging the relative efficiency and performance of these models on different
datasets. There was a clear recognition of the necessity for a methodology that embraced automation in forecasting
time series to circumvent the manual intensity of traditional methods.

In pursuit of this objective, our strategy included the intent to automate the entirety of the processes associated with
time-series forecasting. This automation would not only encompass exploratory data analysis and feature engineering
but also ensure these tasks were executed with greater precision and efficiency.

Encouraged by various instances observed in the use of Autogen tools, we proposed to extrapolate their applications
towards creating an automated data science pipeline, potentially revolutionizing the field by significantly reducing
laborious data processing and enhancing the predictability of outcomes.

3 Methodology

In this section, we detail the methodology used to develop and evaluate our multi-agent system for data science tasks.
We outline the framework and experimental design, including the workflow, interaction between agents, and the specific
roles of each agent. We also discuss the large language models (LLMs) employed in our experiments and the prompt
engineering techniques used to enhance agent performance. Furthermore, we describe our evaluation methods, manual
annotation criteria, and the datasets selected for our experiments.

3.1 Framework

Our method was developed using the open-source framework Autogen [10], which facilitates the development of large
language model (LLM) applications utilizing multiple agents capable of conversing with each other to solve tasks. We
leveraged the agent sequences enabled by Autogen.
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3.2 Experimental Design

As shown in Figure 1, our workflow begins with two user inputs: the dataset to be processed and the specific problem to
be addressed.

3.2.1 Workflow Overview

The pipeline consists of seven agents, with the user agent as the main point of communication for the other agents,
executing code provided by them. The six other agents operate sequentially, interacting with the user agent until the
task is completed:

• Problem Definer Agent: Assesses the type of data and determines the machine learning problem (e.g.,
regression, classification, time series).

• Data Analyst Agent: Provides insights from the data, informing the decisions of the model consultant and
feature engineer agents.

• Model Consultant Agent: Selects the most suitable machine learning model based on insights from previous
agents, offering alternatives if necessary.

• Feature Engineer Agent: Conducts data transformations, splits the data into training and test sets, and divides
it by features and target variables.

• Model Builder Agent: Creates, fits, and evaluates the machine learning model, and makes predictions.

• Report Generator Agent: Compiles summaries from all agents into a comprehensive final report.

The other six agents operate sequentially, interacting with the user agent until the task is completed.

• Problem Definer Agent: Determines the type of data and identifies the machine learning problem (regression,
classification, time series, etc.).

• Data Analyst Agent: Provides insights from the data to guide the decisions of the model consultant and feature
engineer agents.

• Model Consultant Agent: Selects the most suitable machine learning model based on insights from the data
analyst and offers alternatives if needed.

• Feature Engineer Agent: Conducts necessary data transformations, splits the data into training and test sets,
and divides it by features and target variables.

• Model Builder Agent: Creates, fits, and evaluates the machine learning model, and makes predictions.

• Report Generator Agent: Compiles summaries from each agent to produce a comprehensive final report.

The end of our pipeline provides access to the machine learning model in a pickle format [28], the final report, and the
predictions in a CSV file.

3.2.2 Interaction from Agent to Agent

Each agent receives context accumulated from previous agents, summarized as follows:

• Problem Definer: User problem, target variable, instructions to read the data.

• Data Analyst: Correlations, column names, other relevant insights.

• Model Consultant: Machine learning model, explanations of why the model was chosen, and alternatives.

• Feature Engineer: Transformations, data splitting, and where the data was saved.

• Model Builder: Results of the evaluations.

• Report Generator: Summarizes inputs from all previous agents.

3.3 Large Language Model Used

To perform our experiments with multi-agents, we needed to decide which large language model to use. We initially
experimented with GPT-4-turbo, achieving the first indications that our framework could accomplish our goals. However,
due to monetary constraints, we could not continue with this model as the experiments became expensive.

6



Towards Universal Applied Supervised Machine Learning

We then decided to switch to GPT-3.5, which required prompt modifications but also yielded favorable results. When
Meta launched Llama 3, we tested it using the version available on Groq, and obtained better results than with GPT-3.5.
Since then, our research has focused solely on Llama 3.

The temperature setting was 0 for all experiments, and we cleared the cache before starting each experiment.

3.3.1 Limitations of Llama 3

Using Llama 3 via Groq presented challenges due to API rate limits, which sometimes caused large code errors and
pipeline crashes. Additionally, even with a temperature setting of 0, results varied across identical experiments.

3.4 Enhancing Prompt Engineering

In the initial stages of prompt engineering, we provided our agents with succinct and straightforward prompts. Our
preliminary operational prompts were crafted for four agents and included:

• Data Analyst: "As a data analyst, your task involves comprehending the dataset, assessing its quality, and
performing exploratory data analysis."

• Feature Engineer: "As a data engineer, your responsibility is to review the data analyst’s findings and to refine
and adapt the data for machine learning application. Post optimization, you are to partition the data into
training and test sets without randomizing it."

• Model Builder: "Your duty as a machine learning engineer is to construct an XGBoost model using the data
prepared by the feature engineer. This involves fitting the model to the data, generating predictions, and
evaluating the model’s performance."

• Report Generator: "As a report generator, you are tasked with compiling insights from previous agents into a
detailed report and saving it as a .txt file."

While this method yielded practical results, we recognized the need to enhance both our pipeline and the prompts.
Hence, we integrated two additional agents.

3.4.1 Adopting the CO-STAR Methodology

Our quest to improve our agents’ prompts led us to an article by Sheila Theo on Medium [29], where she outlined
her strategy for winning a prompt engineering competition. Adopting her method significantly improved our agents’
efficiency.

The CO-STAR method restructures the instructions given to our agents as follows:

• Context: Supply the agents with background information pertinent to the task.
• Objective: Clearly articulate the specific task the Language Model (LLM) is expected to carry out.
• Style: Designate the desired writing style for the LLM’s output.
• Tone: Determine the intended tone for the response, setting an appropriate attitude for the communication.
• Audience: Ascertain the target audience for whom the response is being tailored.
• Response: Define the format in which the response should be presented.

After enhancing our results with this technique, the final results presented here were achieved by defining specific tasks
for each agent in the objective section.

3.5 Evaluation Methods

We used specific manual annotation criteria to evaluate the quality of each agent’s responses.

For the Problem Definer Agent, the goals are clear. It has three tasks: to identify the type of problem (regression,
classification, or time series), to determine how the data should be read, and to identify the target and features.

The Data Analyst Agent was initially tasked with three simple tasks: checking the range of values for each variable,
calculating descriptive statistics for numerical variables, and analyzing correlations between variables.

The Model Consultant Agent’s task is to choose the most suitable machine learning model based on the problem type
and the data analyst’s insights.
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The Feature Engineer Agent handles transforming outliers, filling missing values, creating lag features for time-series
problems, checking for categorical columns, encoding those variables, splitting the data into training and test sets, and
saving it.

The Model Builder Agent reads the data saved by the feature engineer, trains a machine learning model, makes
predictions, and evaluates their performance using metrics such as RMSE for regression and time series, and accuracy
and confusion matrix for classification.

The Report Generator Agent compiles insights from each agent into a detailed report.

Outcome Description

Correct

Precise The pipeline was execute without failing any step

Imprecise Correctly reach the predictions and the report but one
agent have failed

Incorrect

Hallucination Throughout the sequence one of the agents invent data
to reach the final predictions

Rate Limits On of the agents reaches a loop to solve the task and rate
limits are exceeded

Table 1: Mannual Annotation Criteria - General Pipeline

Predictions Outcome Description

Very Good For classification problem if the accuracy is above 0.9.
For the others if the normalized RMSE is bellow 0.1.

Good For classification problem if the accuracy is between 0.7
and 0.9. For the others, if the normalized RMSE is

between 0.1 and 0.3.

Poor For classification if the accuracy is between 0.5 and 0.7.
For others, if the normalized RMSE is between 0.3 and

0.5

Non-exists The pipeline doens’t produced Predictions.

Table 2: Mannual Annotation Criteria - predictions

We evaluate our pipeline based on our qualitative and quantitative tables. For classification we check for the accuracy.
Accuracy can be defined as:

Accuracy =
Number of Correct Predictions

Total Number of Predictions
(1)

For regression and time-series we define this normalized RMSE that can be defined for a ymax that means the maximum
value that exists in the data and for ymin that is the minimum value there is in the data:

Normalized RMSE =
RMSE

ymax− ymin
(2)

Where RMSE is the Root Mean Squared Error, calculated as:

RMSE =

√∑n
i=1(yi − ŷi)2

n
(3)

Where yi is the true value of the target variable, ŷi is the predicted value of the target variable, and n is the total number
of predictions

8



Towards Universal Applied Supervised Machine Learning

The quantitative table defines four levels of prediction quality:

• Very Good Predictions: for classification problem if the accuracy is above 0.9. For the others if the normalized
RMSE is bellow 0.1.

• Good Predictions: for classification problem if the accuracy is between 0.7 and 0.9. For the others, if the
RMSE is between 0.1 and 0.3.

• Poor Predictions: for classification if the accuracy is between 0.5 and 0.7. FOr others, if the normalized RMSE
is between 0.35 and 0.5

• Non-existant: the pipeline doens’t produced Predictions.

3.5.1 Datasets

We selected 30 datasets: 10 for time-series, 10 for regression, and 10 for classification, chosen from various fields. All
the data we collected are available publicly in kaggle and in the machine learning repository. We have access to all the
data we used also in out publicly repository.

4 Results and Analysis

The results presented here are derived from our final experimental setup. These results can be replicated or further
analyzed using the "Experience Paper" branch in the MADS repository.

We first analyze whether the pipeline was executed correctly. Table 3 summarizes our evaluation of each pipeline
execution.

In the considered successful experiments, two cases were not entirely smooth. In these instances, the feature engineering
agent did not perform the necessary transformations perfectly. Consequently, the model builder agent had to read the
full dataset and perform the data splitting task itself. Nevertheless, it still managed to achieve the desired predictions.

As shown in the table, out of 30 datasets, 24 successfully reproduced our desired outcomes. Of the 6 datasets that failed,
5 were due to rate-limit constraints. Throughout these experiments, we observed that some agents occasionally took
longer than expected to solve problems. These delays are generally correlated with the difficulty of interpreting the data.

While the agents can ultimately solve the problems, the extended processing time seems to cause a loss of context.
When this occurs, the agents, which are instructed to respond with ’TERMINATE’ upon completing their tasks, fail to
do so. This oversight results in an infinite loop, rendering the process unsuccessful and reaching the rate limits.

Addressing these resource limitations is crucial for future experiments to produce more robust results. Given these
constraints, we are unsure whether the pipeline would have been successful under different conditions. One dataset,
a time-series problem, unequivocally failed because the system could not resolve the problem and started limiting
responses to manage the task.

Outcome Classification Regression Time-Series Total

Correct

Precise 8 8 7 23

Imprecise - 1 - 1

Incorrect

Hallucination 1 - - 1

Rate Limits 1 1 3 5

Table 3: General pipeline evaluation

As for the predictions themselves, Table 4 presents the outcomes. It is important to note that, for each dataset, the
feature engineering agent consistently split the data into training and testing sets, allocating 80% of the data for training
and 20% for testing.

An intriguing finding is that the model consultant agent tended to select the same models across different datasets,
regardless of the varying characteristics of each dataset within its category. Specifically, for regression problems across

9



Towards Universal Applied Supervised Machine Learning

nine datasets, the model consultant chose the Random Forest Regressor five times and Linear Regression four times.
For time-series problems, ARIMA was chosen for all but one dataset, where SARIMA was selected instead. For
classification problems, the agent consistently opted for the Random Forest Classifier.

This behavior suggests a significant limitation in our pipeline. Although there is no consensus in the literature regarding
the best machine learning model for each problem type, we believe the agents’ choices reflect the models most frequently
encountered during the training of the LLM.

Despite this limitation, our prediction results are quite promising. Overall, our pipeline produced 11 excellent results, 9
good results, and 4 poor results. We encountered only six datasets where we could not generate predictions.

Classification Regression Time-Series Total

Very Good 5 5 1 11

Good 1 4 4 9

Poor 2 - 2 4

No-exists 2 1 3 6

Table 4: Predictions evaluations

Regarding the number of tokens used in this experiment, the overall mean was 37,875 tokens. By defining specific
tasks, we were able to reduce the number of tokens each agent required. In table 5 you can check the mean of tokens by
each type of categorie.

Classification Regression Time-Series Total

Tokens used 36941 38996 37688 37875

Table 5: Mean of tokens by categories

For a more detailed overview of the types of inputs used and the areas corresponding to each type of problem, please
refer to the appendix where detailed tables are provided.

5 Conclusion and Future Work

This study developed and evaluated a multi-agent framework for automating data science tasks using large language
models (LLMs) within the Autogen framework. The pipeline, comprising seven specialized agents, successfully
processed 24 out of 30 datasets, producing accurate predictions and comprehensive reports. Key Findings of our
research:

• Pipeline Performance: The pipeline demonstrated an 80% success rate across diverse machine learning tasks,
highlighting its robustness and potential for automation.

• Prediction Quality: The framework produced very good results for 11 datasets, good results for 9, and poor
results for 4, with no predictions generated for 6 datasets.

• Model Selection: The model consultant agent tended to favor familiar models, indicating a potential area for
improvement in model diversity and selection criteria.

• Resource Efficiency: Optimization of agent tasks reduced the average token usage to 37,875 tokens, demon-
strating efficient resource utilization.

Limitations of our research:

• Rate-Limit Constraints: API rate limits caused failures in complex datasets, indicating a need for improved
workflow optimization.

• Model Selection Bias: The model consultant agent’s preference for certain models suggests a need for more
diverse training or refined selection algorithms.
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• Hallucinations and Infinite Loops: Issues with agent hallucinations and infinite loops highlight the need for
better error handling and context management.

This research demonstrates the feasibility of a multi-agent approach to automate data science workflows, paving the
way for more efficient and scalable solutions in machine learning automation.

By refining the framework and addressing identified challenges, this work lays the groundwork for the development
of fully autonomous data science pipelines, promising significant advancements in the field of automated machine
learning.

In conclusion, our multi-agent framework represents a significant step towards automating the end-to-end data science
process. The successful execution of tasks across diverse datasets, coupled with promising prediction results, validates
the effectiveness of our approach. While challenges remain, the findings from this study provide a robust foundation for
future research and development in the realm of automated data science, promising more efficient and scalable solutions
for complex machine learning tasks.

5.0.1 Future Work

Future research should focus on addressing API rate limits, enhancing model selection diversity, and improving error
handling mechanisms. Additionally, expanding the range of datasets can provide more comprehensive validation of the
pipeline’s capabilities.

Beyond enhancing our current approach, we aim to equip our agents with a diverse set of tools to further improve
our methodology. Specifically, we will address the challenges faced by our model consultant agent by researching
which models may best adapt to different types of problems and domains. For time-series models, we plan to test
whether providing the model consultant/model builder with the current state-of-the-art foundation models enables them
to enhance the overall approach.

Regarding the general pipeline, as mentioned at the beginning of the paper, we are actively researching the application
of reinforcement learning to our pipeline. Existing research indicates that reinforcement learning can significantly
enhance the performance of multi-agent systems, and we believe it will offer substantial benefits.

We encourage everyone to regularly check our library, as it will be frequently updated.
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A Appendix

For a more detailed overview of the types of inputs used and the areas corresponding to each type of problem, please
refer to the tables below.

The table 6 shows the full results that the agents have in the regression problems.

The table 7 shows the full results that the agents have in the regression problems.

The table 8 shows the full results that the agents have in the regression problems.

Data set Input Report Generated Normalized RMSE Tokens Used

Second Hand Car
Price

I want to predict car
price

yes 0.1048 31248

Cholesterol I want to predict
cholesterol

yes 0.0757 37728

Crab Age I want to predict
crab age

yes 0.1400 39753

Bike Rents for the
Day

I want to predict
bike rents for the

day

yes 0.0125 65447

Fuel Consumption I want to predict
Fuel Consumption

yes 0.1078 42462

House Sales in King
County

I want to predict
house prices

Rate Limits - -

Medical Insurance
Cost

I want to predict the
cost of medical

insurance

yes 0.0451 33197

Elevator Predictive
maintenance

I want to predict the
vibration

yes 0.2390 34177

Happiness Index I want to predict the
overall rank of

happiness

yes 0.03222 40633

Student
Performance

I want to predict
students

Performance

yes 0.0225 26316

Table 6: Detailed table in Regression
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Data set Input Report Generated Accuracy Tokens Used

Airline Costumer
Satisfaction

I want to predict
whether future

customers will be
satisfied

yes 0.9574 34598

Anemia type I want to predict the
type of anemia

yes 0.9883 26771

Employee Attrition I want to predict
employee attrition

yes 0.8776 30568

Mushroom
Classification

I want to predict the
mushroom class (is
edible or poisenous)

yes 1 30746

Obesity
Classification

I want to predict the
type of obesity

yes 0.9091 29742

Machine Predictive
Maintenance

I want to predict the
variable target

Rate Limits - -

Telecom costumer
churn

I want to predict
costumer Churn

Category and Churn
Reason

Hallucinates - -

Thyroid disease I want to predict
recurrence of

thyroid cancer, if
yes or no

yes 0.9870 22578

White wine quality I want to predict the
classification of the

wine quality

yes 0.6594 21877

Red wine quality I want to predict the
classification of the

wine quality

yes 0.6735 24864

Table 7: Detailed table in Classification
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Data set Input Report Generated Normalized RMSE Tokens Used

Air Passengers I want to forecast
the passengers rate

yes 0.2253 30011

Daily Minimum
Temperatures

I want to forecast
the daily minimum

temperature

Rate Limits - -

Eletric Production I want to forecast
the eletrical
production

yes 0.2322 27856

Hourly Gasoline
Prices

I want to forecast
gasoline prices

yes 0.0184 39678

Microsoft Stock I want to forecast
microsoft stock

yes 0.3651 28895

Montlhy Beer
Production

I want to forecast
the monthly beer

production

yes 0.2439 24720

Energy
Consumption

I want to forecast
energy consumption

yes 0.1396 82912

National Population I want to forecast
population growth

Rate Limits - -

Water Pum Rul I want to forecast
RUL of water pump

Rate Limits - -

Sales of Shampoo I want to forecast
the shampoos sale

yes 0.3555 19925

Table 8: Detailed table in Time-series
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